您好!欢迎来到千里眼望远镜购物商城!

望远镜商城>> 资讯中心>> 产品资讯>> 望远镜资讯

双筒望远镜结构图详解

——双筒望远镜结构原理示意图详解

作者:佚名发布时间:2011年12月26日来源:本站原创点击数:


双筒望远镜(或直接简称双筒镜,也有人称之为野外镜)是将两个相同的或者镜像对称的望远镜并排连在一个架子上使得它们始终对准同一方向而制成的望远镜。使用者可通过它同时以双眼观察远处景象。双筒望远镜比单筒望远镜提供更高的深度和距离感。双筒镜也可以成由两个短的折射望远镜组合,用于观看遥远目标的设备。

最常见的双筒望远镜的大小正好适合双手托拿,它包括内部的反射系统,这个系统可以缩短望远镜的长度,使它短于透镜的焦距。此外它还可以增高物镜之间的距离来改善深度感。所有常见的双筒望远镜是伽利略式的,或者使用棱镜来呈现一个正像。

大的双筒望远镜比较重,不易稳定地拿住,因此一般被固定在三脚架上或其它支柱上。在第二次世界大战中美国制造过非常大的(10吨),其物镜的距离相当远的(15米)大型双筒望远镜来确定25千米以外的海上目标的距离。目前世界上最大的双筒望远镜是位于美国亚利桑那州的(Large Binocular Telescope,LBT)。



与单筒望远镜分别

与单筒望远镜相比,双筒望远镜可给使用者一种立体感:它在使用者的每只眼睛里产生一个稍许不同的图像,这两个图像在使用者的脑中合成一个有深度知觉的总图,使用者可以以此来估计距离。在使用时双筒望远镜用起来也更舒服,使用者不必合上一只眼睛或者使用一个挡板来避免视觉上的混淆。此外稳定地持和平稳地移动双筒望远镜比起持单筒望远镜更容易,因为双手和头部这三个点的可以形成一个稳定的平面,持单筒望远镜时这三点位于一线上。



伽利略式双筒镜

几乎在望远镜刚发明的17世纪,就已经开始探索如何将两只望远镜平稳的架设在一起了 。早期的双筒镜都是伽利略式的光学设计,使用一个凸面镜和凹面镜来制做。伽利略式的好处是影像是正像,但是视野狭窄,放大倍数也不高。这种型系的结构目前依然使用在便宜的模型望远镜和观剧镜上。
公理世界

普罗棱镜双筒镜


双普罗棱镜设计

这是以意大利的光学工程师伊纳济欧·普罗为名的,他在1854年获得了这项正立影像设计的专利权,稍后在1890年代卡尔·蔡司的光学公司使用两个普罗棱镜以Z字型的排列制造出高品质的双筒镜。这型的特征是有宽广的视野,而物镜端产生的分离在目镜端予以良好的抵销掉。普罗棱镜的设计有摺叠光路的好处,使得有形的长度比实际的焦距长度短,而物镜之间更宽广的空间,产生了更好的景深感。

倒立普罗棱镜式 (Inverted Porro prism)的内部光路一样,只是物镜比目镜更靠近一起。优点是结构较为紧密、小巧,而缺点是立体感不佳。由于受结构所限,口径不大,一般来说质素较次。



阿贝-柯尼"屋顶棱镜"的设计



使用屋顶棱镜设计的双筒镜也许早在1880年代就已经由阿基里·维克托·埃米尔设计出来了[2][3]。多数以屋顶棱镜制做的双筒镜不是使用阿贝-柯尼棱镜(以恩斯特·阿贝和艾伯特·柯尼为名,卡尔·蔡司在1905年取得专利)[4],就是施密特-别汉棱镜(在1899年发明)来摺叠光路和使影像正立。与普罗棱镜比较,他们的视野较狭窄,结构较复杂,价格也较昂贵,物镜和目镜几乎就在一条轴线上。



除了价格和轻便性之外,在这两种设计上还有反射和亮度上的差异。在相同的放大倍率、口径和光学品质下,因为内在的在光路上的吸收率本质因素,普罗棱镜的双筒镜的影像会比屋顶棱镜的双筒镜明亮。过去屋顶棱镜式的缺点很多:首先其结构比较复杂,光线共反射六次,有较多的光度损失。此外,当光从镜面反射回来的时候,其相位会改变 (phase shift)。部份光会被部分偏振化(polarisation)。当两束部分偏振化的光相遇互相干涉的时候,光度会再损失(破坏性干涉效应,destructive interference),令屋顶棱镜和同级普罗镜比就会暗一些,成像偏软。但是,从2005年起,因为使用了新的镀膜技术,使用最佳的施密特-别汉棱镜的屋顶棱镜双筒镜,在光学品质上已经可以媲美普罗棱镜的双筒镜,在不考虑他们的高价格下,看来屋顶棱镜双筒镜将占有轻便型的高品质双筒镜市场。欧洲主要的光学厂家(徕卡、蔡司和Swarovski)都停止了普罗镜的生产线;日本的厂家(尼康、富士等)也可能跟进。

在棱镜盖板上列出的参数说明这架双筒镜的倍率是7倍,口径50毫米,在1000码的距离处视野宽为372英尺。

光学参数

双筒镜常为了预期的特殊用途而被设计。一般双筒望远镜都有标示物镜口径、倍率与视场等数据。比如标示“7×50”说明该双筒望远镜倍率为7倍,物镜口径为50毫米。望远镜的成像质量以及实际分辨率则由其镜片质量与厂商制作工艺决定。这些不同设计的一些光学参数(有些会标示在双筒镜的棱镜盖板上)如下:

物镜口径

物镜的口径可以决定能吸收多少的光线来成像,通常是以毫米(mm)来表示。

集光力是指物镜收集光线比肉眼强多少倍的能力,公式是: 物镜面积 / 瞳孔面积(7mmx7mm)。然而镀膜、制作精度也会影响光度。一枝优秀的10x40的光度可能比中级的10x50高。

倍率(Magnification)

倍率计算公式: 物镜焦距 / 目镜焦距 倍率是物镜的焦距除以目镜焦距的商,这是线性的放大倍率(有时会以直径来表示)。例如,倍率为7的,好像将物体拉近7倍距离的影像。倍率的数值取决于双筒镜在设计时的用途,手持的双筒镜倍率较低,以减少可能的震动。提高放大率会使视野相对应的减小。倍率越高手持抖动造成的影响也越大,因此对于观景来说放大率小(7~10倍以下)的双筒镜效果有时甚至更好,因为它们更稳定。一般来说10倍乃是一般人之极限。

经常会以放大率X口径的型式来表示双筒镜的特性,也就是显示为7×50,并显示在棱镜的盖板上。

一般双筒望远镜放大率8倍以下的为最好,它们能提供足够放大率,同时手持也不太费劲。大多数人可以稳定地拿它们。7×30或8×30的双筒望远镜对白天使用已非常足够。口径40或50毫米的双筒望远镜在夜间提供较好的亮度。夜间使用的(如用在观星上)双筒望远镜若需更高放大率的话,需更高口径。

手持的双筒望远镜最小的是3×10的伽利略观剧镜,一般户外最大的放大率在7至12倍之间,口径在30至50毫米之间。更大的双筒望远镜一般需要一个支柱,比如天文爱好者使用的约150毫米的双筒望远镜。有一些天文爱好者也制造过更大的反射或者折射的双筒望远镜,其效果有好有坏。

视野

双筒镜的视野取决于它的光学设计,通常他显示的是线性的数值。例如标示为在1,000码(或1,000米)的距离时看见的宽度为多少英呎(或米),或是直接标示可以看见的视野角度。

出射光瞳

倍率计算公式: 物镜口径(mm) / 倍率

当你手持双筒镜使目镜离双眼一段距离时,你会见目镜中央有一个圆型光点,其余地方为黑色,这光点就是出射光瞳。双筒镜经由物镜收集的入射光会集中在目镜,也就是由出射光瞳射出,射出的直径就是出射瞳的孔径,其大小及极为物镜与倍数相除的商值。出射光瞳越小,代表影像较光亮,较易看到影像。若出射光瞳太细,会使影像难于观测。要最有效率的使用收集到的光线并有效的提高亮度,出射瞳的直径应该与充分张开的虹膜直径一样大。人眼的虹膜最大直径—大约是7 mm,但会随着年龄的增加而减小。如50岁的人瞳孔夜间中扩到最大亦只有5mm。因此,比这个值高的出射光瞳会浪费部分的光。出射瞳太大会是浪费掉收集的光量,而且在观察小天体时,出射光瞳太大会降低反差,尤其在观察暗弱天体时十分不利,所以在白天使用出射瞳约3mm的就足够了。目前较普遍的出射光瞳为5 毫米,比如10×50或者8×40。但是,较大的出射瞳能使眼睛更容易对准光束,并且能避免突然进入黑暗边缘的晕边现象。

适眼距

适眼距 是从真实的目镜到后方仍能清晰看见影像的距离,在这个距离之内观测者看见的影像没有晕散开的现象。通常目镜的焦距越长,适眼距也会越长。双筒镜的适眼距一般都在几毫米至2.5厘米的范围内,这个距离对戴眼镜的观测者非常重要。通常,需要较长的适眼距才能让戴着眼镜的观测者依然能看见完整的视野,而不是只看见片段的范围。在使用时,适眼距太短的双筒镜也很难让观测者维持平稳的进行观测。

美国海军的双筒镜

光学镀膜

抗反射膜



由于双筒镜可以有多达16个空气与玻璃交界的表面,而每个表面都会造成光线的损失,因此镀膜的品质对影像的质量影响极大。光线在不同物质内有不同的折射率,因此在穿过不同物质的交界面时,会有部分被反射和部分透射并被折射(此处是玻璃和空气的交界面)。任何一种需要呈现影像的光学仪器(望远镜、照相机、显微镜等),在理想上是不要反射任何光线;取而代之的是应该以所有的光线来成像。经过反射之后抵达的光会散布在观测者的视野内,降低影像与背景环境间的对比。经由在界面上的光学镀膜处理,虽然无法完全消除,但可以减少光线的反射。光线在进入或离开玻璃时,每次大约都会有5%被反射回去。这些"迷途"的光线会在双筒镜的内部到处乱闯,使影像模糊而难以观看。在透镜上镀膜可以有效降低反射的损失,最后可以获得一个更加明亮和清晰的影像。例如,经过良好镀膜处理之后的8x40双筒镜的影像,可以比未曾镀膜的8x50双筒镜更为明亮与清晰。虽然光线一样在仪器的内部被反射,但是在比例上已经降低到微不足道得可以忽略的程度。对比也因为绝大部分的内部反射都被消除而获得改善。

传统的透镜镀膜材料是镁氟化物,可以使反射率由5%降低至1%。现代的透镜镀膜,包含复杂的多层镀膜,不尽可以使反射率降低至0.25%,还能让影像有最大的亮度和原本的自然颜色。在屋顶棱镜,抗相位转移的镀膜技术,在对比的改善上非常有效。目前使用在灀筒镜上的镀膜处理,有下列几种层级:

* 镀膜光学:一个或多个表面有镀膜。
* 全镀膜:所有的空气与玻璃交界的表面都有镀膜,但是如果使用塑胶的透镜,可能没有镀膜。
* 多层镀膜:一个或多个表面有多层的镀膜。
* 全多层镀膜:所有的空气与玻璃交界的表面都有镀膜。

相位修正棱镜镀膜和电介质棱镜镀膜以减少反射的技术,是最近(2005年)才有效的新技术。

投币式双筒镜


对焦和调焦

使用双筒镜观看的物体,距离不是固定不变的,所以必须有聚焦的功能。传统上,有两种不同的方法来调整焦点:"独立调焦"(IF)和"中央调焦"(CF)。"独立调焦"的双筒镜在个别镜筒的目镜上都可以改变与物镜的距离。被设计在恶劣环境下使用的双统镜,如军用的,都会使用独立调焦。另一种类型为中央调焦,由一个中央调焦的轮轴同步改变两个目镜与物镜的距离,之后可以进一步对二个目镜中的一个进行调整,以校正两眼之间的差异(通常在目镜的基座上调整),也就是屈光度的差异。因为可以一次对两眼近型调整,所以一般的使用者偏好此一类型,特别是个人专用的情况下,因为一旦作过屈光度的调整之后,在重新对不同距离的物体聚焦时,只要透过中央的调整轮就可以一起移动两个镜筒的焦距,而不用在调整目镜了。

也有称为"自由焦点"或"固定焦点",不需调整焦距的双筒镜。因为它们的景深从足够近的距离直到无穷远,而且能确实的将影像维持在一定的品质上,特别是在中间的距离上(不全然是如此)。

变焦双统镜在原则上是一个很好的想法,但在实务上并很难制做出高品质的产品。

现代的双筒镜多数绞链的结构,可以配合观测者两眼调整目镜间的距离,旧型的则缺乏此种功能。


影像稳定

利用影像稳定的技术可以减少双筒镜的震动,对高倍率的使用者大有帮助。改变影像呈现的位置,或借助于安装在内部的陀螺仪或惯性回转仪和驱动器所提供的动力,可以消除突然的震动或移动的影响。稳定仪是否需要工作可以由使用者来决定,这些技术只需要很少量的动力就可以使影象稳定,因此可以让手持的倍数高达20X。但还是有些不便之处:

* 与架在三角架上未做稳定影像处理的双筒镜比较,影像的品质可能不是最佳的;而且当仪器出错时影像品质会变得更糟。
* 它们更为昂贵,而且电池的寿命不够长。
* 当观察移动中的物体时,不适合使用稳定影像的功能。

调整

经过良好调校的双筒镜,当影像经由观测者的双眼传送至脑部时,应该是唯一的一个三度空间的影像,而不是两幅有稍许不同的相似的影像。如果不是理想的情况,最常见的,将导致眼睛的不舒适与视力的疲劳,但可察觉的视野无论如何都还是一个圆形的区域。在电影的场景中,当通双筒镜观看时,常常会用两个有部分重叠的圆组成的8字型来代表所见到的视野,在实际生活中是不对的。

不同心度可以经由对棱镜的位置做些许的调整来修正,通常只要转动螺丝而不需要拆开双筒镜;或是调整预先安置在物镜组合内的偏心环的位置。虽然在网络上可以找到如何进行调整的资料,但这些调整工作通常都需要专家在仪器的检查与协助下才能完成。

军舰上的双筒镜

天文学应用

双筒镜被业余天文学家广泛的使用,特别是便于携带的型式,因为它们宽广的视野用在彗星和超新星的搜寻上非常有效。

特殊的低亮度和物镜直径与放大率的比率是天文观测者最在意的。虽然大的出射光瞳意味着有些光线被浪费掉了,但低的放大倍数能使视野更为广阔,适合观赏大的深空天体,像是银河、星云和星系等目标。大的出射光瞳也使背景的星空呈现在视野之中,使有效的对比降低,不利于侦查暗弱与远距离的目标,但与周遭的光污染比较,又显得是微不足道了。天文学上对双筒镜的使用是倾向于大口径的,因为口径越大,越能收集更多的光线,才能看见更微弱的天体。如1996年1月底,百武彗星的发现者所使用的双筒望远镜口径高达150mm。观鸟爱好者和猎人也是双筒望远镜的主要市场。

许多巨大的双筒镜是由业余制镜者完成的,有些根本就是两架折射望远镜组合的结果。在专业的天文界中有一架非常巨大双筒镜,LBT(Large Binocular Telescope),但是没有人称他为双筒镜,坐落在美国亚利桑那州,已经在2005年10月26日启用。LBT是由两架8米反射镜组合成的,毫无疑问的就像观测者的一对眼睛一样,两架望远镜同时看一个目标。由于他是分离开的两个镜片,所以能扩大视野并收集到更多的讯息。


选择

理想的双筒望远镜应该产生两个相同的、质量绝好的、没有色差和相差的成像。两个成像该没有大小、方向的差别。实际上的双筒望远镜当然多少有些误差。

最常见的双筒望远镜为8×30。7×50和10×50较适合夜间使用。所有的双筒望远镜至少应调节良好,两幅图像应该相配(重合没有重影),此外使用时舒适,还有一定的牢固性。屋脊棱镜的双筒望远镜较轻,较小巧,但与相应的普罗棱镜的双筒望远镜相比也比较贵。

充了干燥气体(一般为氮气)的密封的双筒镜内部不会在低温度下形成凝结水与生长霉菌。但假如保管不好的话时间长了密封可能会泄漏。有些完全密封的双筒镜甚至有防水效果;当然,此类双筒镜比同口径同类型的贵。

放大率和物镜口径要根据使用需要选择。放大率越高手颤动造成的抖动也越强烈。物镜口径越大整个望远镜的重量和大小也越高。

口径非唯一的重要参考,物镜、棱镜上的镀膜同样重要。没有这层防止反射的镀膜,每次光在通过空气和玻璃之间的接口时有5%的光会被反射。

影像稳定装置可以使手持的双筒望远镜达到更高的放大率,缺点是它非常昂贵,很大和很重。它们较容易坏,还需要电池驱动。

与选择光学仪器一样,即使是同一厂商、同一型号的双筒望远镜也可能会有质量的些微差别,因此在购买时要特别用心比较。

以双筒镜观测深空天体比以单筒镜轻便与明亮,故受天文爱好者欢迎,使用的望远镜物镜口径一般较大(如50mm或以上)与可以三脚架支承,用以提供一个稳定、舒适而清晰的观测环境,而专业寻彗使用的双筒镜则口径则更大。

保养与维护

假如双筒望远镜的两个筒产生的图像不适当相应(光轴不一致),那么使用这样的双筒望远镜会很不舒服,其效果也不好。其原因可能是因为生产质量不好,或者望远镜被碰撞过,或者望远镜老化变形(此情形很少出现)。使用外部的螺丝可以调节内部棱镜光轴来解决,这样也不需把望远镜拆开,但这是检修师傅修理的专业程序,这操作会直接改变成像,非一般人能维修。

而平时使用后的双筒镜应与相机镜头、照相机的修藏方法一样──置于长期干燥密闭的环镜中(如放潮箱等)并定时检查状况。观赏与携带时亦严防碰撞与随便沾污与擦拭物镜与目镜。

收集的不同类型目镜。

目镜

又称接目镜,通常是一个透镜组,可以连接在各种不同光学设备,像是望远镜和显微镜,的后端。所以如此命名,是因为当设备被使用时,它常是最接近使用者眼睛的透镜。物镜的透镜和面镜收集光线并引导至焦点生成影像;目镜被安置在焦点,主要的功能在放大影像,放大的倍率则与目镜的焦距有关。

目镜通常会包含几个组装在一起的“透镜元件”,装在一个筒状物的后端。这个筒状物则会塑造成适合仪器的特别开口,影像可以经由移动目镜和物镜焦点的位置而聚焦成像。多数仪器都会有一个聚焦的装置,允许目镜在轴上移动,而不需要直接去操作目镜。

双筒望远镜的目镜通常是永久固定在镜筒上,因此它们的视野和放大倍率都是预先就被设定好的。望远镜和显微镜,目镜通常都可更换,而通过目镜的更换,使用者可以调整视野和倍率。例如,望远镜就经常以更换目镜来增加或减少倍率;目镜也为使用者提供提供不同视野和适眼距的调整。

现在用于研究的望远镜已不再使用目镜,取而代之的是装置在焦点上的高品质CCD传感器,而影像就可以直接在电脑的显示器上观察。有些业余天文学家也在个人的望远镜上安装了相似的设备,但普遍的仍然是直接使用目镜来观察影像。

除了伽利略式望远镜的目镜采用凹透镜以外,大多数望远镜的目镜都可以等效为凸透镜。一个好的目镜应该尽可能消除色差、像差、提供优良的像质,提供较大的表观视场,较长的适眼距以方便人们使用,提供较好的目镜罩以减少杂光干扰。设计优秀的目镜还考虑了戴眼镜的人使用,使用了橡皮可翻目镜罩或者可调升降目镜罩。目镜的光学系统的设计有多种形式,如:惠更斯目镜(H式或HW式)、冉斯登目镜(R式或SR式),这些属于第一代目镜。第二代目镜具有代表性的有四种:凯尔纳目镜(K式)、普罗素目镜(PL式)、阿贝无畸变目镜(OR式目镜)、爱尔弗广角目镜。第三代目镜最著名的目镜是Nagler目镜,它拥有更加出色的表现,特别是在视场修正技术方面。在小型天文望远镜中,大部分目镜的接口遵循三个标准,即外径为0.965英寸(24.5毫米)、1.25英寸(31.7毫米)和2英寸(50.8毫米),具有相同接口标准的目镜可以互相替换使用。

经由透镜看见的西雅图市影像。


目镜的性质

目镜的一些性质对光学产品的功能非常重要,需要比较以决定最适合需求的目镜。

入射光瞳的距离设计

目镜的入射光瞳永远不变的被设计在目镜的光学系统之外,它们必须被设计在特定的距离上有优异的性能(即在这个距离上的变形极小)。在折射式的天文望远镜,入射瞳通常很靠近物镜的位置,与目镜通常有数英呎的距离;在显微镜,入射瞳通常紧靠著物镜的后焦平面,与目镜只有几英吋的距离。因此显微镜的目镜与望远镜的目镜性质不同,不是互换就能获得适当的表现。

元素和群

每一个独立镜片称为元素,通常是简单的透镜,可以组合成单镜、胶合的双镜或是三合镜。当这些元素被两个或三个黏合在一起时,这种组合就成为群。

第一个目镜只是单片的透镜元素,得到的影像有高度的变形。二或三个元素的设计发明之后,由于改进了影像的品质,很快就成了标准的设计。今天,工程师在计算机协助规划下的设计,以七或八个元素提供了绝佳的影像。

内部反射和散射

内部反射有时也称为散射,导致穿过目镜的光线不仅分散还降低了目镜产生影像的对比。当影像的效果很差时就会出现"鬼影",称为幻像。多年以来,设计时玻璃与玻璃之间制造很小的空气隙,就能有效的改善这个问题。

对薄透镜可以采用在元素表面镀膜的方法来解决这个问题。这一层厚度只有一或两个波长的膜,可以改变通过元素的光线折射来减少反射和散射。有些镀膜可经由全反射的过程吸收这些光线以低浅角度射入的光线,使它们不会穿过透镜。

侧向色差

色差的产生是因为不同的颜色(波长)由一种介质到另一种介质时,有不同的折射率。对目镜而言,色差来自穿越空气和玻璃之间的界面。蓝光和红光在经过目径的元素之后不能距焦在同一个焦点上,这种现象对点光源 的结果是可能产生一个围绕着焦点的模糊色环,通常的结果是造成影像模糊不清。

有几种方法可以减缓这个问题,一种是利用薄膜来改正目镜的元素。较为传统的方法则是利用多个不同玻璃和曲度的元素来消减变形。

纵向色差在光学望远镜中,因为焦距很长而成为很显著的效应;显微镜,因为一般的焦距都很短,就不受这种效应的影响。

通常,目镜在改善色差时,这两种都需要做修正。


焦长(焦距)

焦长是平行的光经过目镜后汇距的点与目镜主平面的距离。在使用时,目镜焦长和物镜焦长的结合,确定了附属的放大倍率。当单独提到目镜时,他的单位通常是毫米(mm);而当在一架可以更换目镜的仪器上使用时,有些用户喜欢使用经过目镜后所能得到的放大倍数做为单位。

对望远镜,一些特殊的目镜可以产生不同的角放大率,并且望远镜和显微镜的组合倍率可以用下面的惯例式来计算:


此处:

  • MA是要计算的角放大倍率,
  • fO是望远镜物镜的焦长,
  • fE是目镜的焦长,要用同样的测量单位来表示。fT.
对一个复合式显微镜的惯用式是:


此处:

  • D 是距离最接近的明视距离(通常是250mm),
  • DEO是物镜的后焦面和目镜的后焦面(称为筒长)的距离,在现代的仪器上这个距离通长是160mm
  • fO是物镜的焦长,FE是目镜的焦长。
因此,要提高放大倍率,可以将目镜的焦长减短,或是将仪器本身的焦长加长。例如,焦长25mm的目镜用在焦长1200mm的望远镜上,放大倍率是48倍;焦长4mm的目镜用在相同的望远镜上,放大倍率是300倍。

业余天文学家使用的望远镜的目镜倾向于将焦长标示出来。在天文学,焦长的表示单位通常是毫米(mm),范围则在3至50毫米之间。实际的放大倍率则依使用的望远镜的焦长来决定。

但是当描述观测现象时,天文学家对于目镜的标示,却又惯用放大倍率,而不是标示目镜的焦长。在观测报告上使用放大倍率是比较方便的,因为它更直接的提示了观测者实际上看到的是什么的看法。由于放大倍率是依赖所使用的望远镜决定,因此单独只提放大倍率对望远镜的目镜是毫无意义的。

依据协议,显微镜的目镜通常标示具体的倍率来取代焦长。显微镜的倍率 PE和物镜的倍率PO的关系如下:


因而对一个复合式的显微镜前端角放大率的表示是:



倍率的定义是依据仪器对任易分离角度在目镜和物镜之间被放大的能力。不同于历史上对显微镜目镜的分析,是依据目镜对角度的放大倍率,和物镜原本的放大能力。这对光学设计师是很方便,但从显微镜学实用的观点上看却缺乏便利性,因此便被摒弃了。一般目镜的放大倍率是8X、10X、15X、和20X。这些倍数是与正常人的能看清楚的最短明视距离,D250mm,比较得到的,所以目镜的焦距可以用250mm除以放大倍率而计算出来。虽然被接受的标准距离是250mm,但现在的显微镜会设计成只有160mm的焦距,使得仪器变得非常的紧凑。现在的仪器也许还会被设计成管子实际上是无限长的(在镜筒内使用一个辅助透镜)。 显微镜影像整体的角放大率是目镜放大率与物镜放大率的乘积。例如,10X的目镜与40X的物镜组合就会得到400X的放大倍数。

焦平面的位置

有一些目镜,像是冉斯登目镜 (在下面有详细的说明) ,焦平面的位置在目镜之外的场透镜前方,因此很适宜做为标线或测微表等十字线安置的位置。在惠更斯目镜,焦平面的位置在眼睛和在目镜内的场透镜之间,是不容易接近的位置。


视野


视野,经常会使用缩写FOV,描述的是经由目镜能看见的目标 (从观测者所在地测量得到的角度) 。目镜的视野范围会根据各自所结合的望远镜或显微镜的放大率而有所变化,也和目镜本身的性质有关。目镜由他们的视野阑做区分,这是进入目镜的光线抵达场透镜前所经过的最狭窄孔径。

由于这些可变的因素,"视野"这个名词通常有两种意义,并且总是只表示其中之一。

* 实视野是使用某一架望远镜时,由于具体的放大效果,通过目镜能看见的真实天空的角度大小,它的范围通常在0.1度至2度之间。
* 视视野是被测量的目镜所有的一个恒定值,范围从35度至80度以上。它本身,明显的是一个抽象的数值,但是可以经由望远镜与目镜结合所得到的的放大率测量出实视野。目镜的视视野通常都会作为目镜的特性标示出来,为用户提供一个方便的方法,计算在自己的望远镜上使用时的实视野。

目镜的使用者通常都需要计算实视野,因为这表示出目镜与望远镜结合时,实际上能看见的天空大小。计算实视野最方便的方法取决于是否知道视视野。

如果已经知道视视野,实视野可以经由下面的近似公式计算:


此处:

  • FOVC是实视野,计量的单位是以FOVP时所提供的角度单位来测量。.
  • FOVP 是视视野。
  • mag是放大倍数。
  • fT是望远镜的焦长。
  • fE是目镜的焦长,用与fT相同的量度单位来标示
望远镜物镜的焦长是物镜的口径乘上焦比的值,他代表镜子或透镜将光线聚集在一个点上的距离。

这种形式的精确度可以在4%以内,或视视野达到40°都是良好的,而在60° 时的误差为10%。

如果不知道视视野,实视野可以使用下面的方法来概估:


此处:

  • FOVC 是实视野,以度读为计算单位。
  • d是目镜视野阑的直径,单位为mm。
  • fT式望远镜的焦距,单位为mm。
第二个公式比第一个来得精确,但是多数厂家通常都不会告知视野阑的大小。如果视场不是平坦的,或是对设计的角度大于60°的超广角目镜,第一个公式就会不准确。

图例 (由左至右) 是2英吋 (50.8mm)、1¼ 英吋 (31.75mm)和0.965 英吋 (24.5mm) 的目镜。


筒径

望远镜有三种不同标准的筒径,而筒径的大小习惯用英吋标示。

* 最小的标准筒径是0.965 英吋 (24.5mm),但几乎已经被摒弃了。仍然使用这种筒径的望远镜不是玩具店内的商品,就是通常只在商城 (大卖场) 内仍然充斥的品质较差的望远镜。许多在这种望远镜上的目镜都是塑胶制造的,有些甚至连透镜都是塑胶的。高品质的望远镜早已不再种尺寸的目镜了。

* 大部分的目镜筒径都是1¼ 英吋 (31.75mm),这种筒径的目镜在实用上的焦距上限大约是32mm。焦距更长的目镜,焦距比32mm更长的目镜,筒径的边缘限制了视视野的大小不能超过50°,而多数的业余者认为这是可以接受的最小视野。这种筒径的螺旋可以置入30mm的滤镜。

* 2 英吋 (50.8 mm) 筒径的目镜经常被使用。2英吋目镜的焦距极限大约在50mm,大于2英吋 (50.8 mm) 的筒径主要在协助延伸目镜焦距的极限。这种目镜的价值通常都很昂贵,并且可能重得足以倾覆望远镜。这种目镜的螺旋适用48mm的滤镜 (或是49mm的)。

显微镜的目镜使用mm为单位,标准筒径为23.5mm和30mm,都比望远镜的筒径小一些。

适眼距


眼睛需要在目镜后方的一段距离内观看经过目镜形成的影像,这段适当的距离称为适眼距。有着较大的适眼距,意味着目镜的品质越佳,也越容易观看到影像。但是如果适眼距太大,要让眼睛长期处在正确的位置上,它会造成眼睛的不舒适。基于这个原因,有些有着长适眼距的目镜,在目镜透镜的后方有眼罩杯的设计,可以帮助观测者能长时间的在正确的距离上观测目标。出射瞳的大小应该与拉姆斯登盘的大小相符。在天文望远镜的情况下,入射光瞳的影像对应于物镜的大小。

适眼距的典型范围在2mm至20mm之间,依据目镜的构造来决定。长焦距的目镜通常都有较宽裕的适眼距,但短焦距目镜的适眼距就有问题了。直到最近,这仍然是相当普遍与共通的,短焦点目镜的适眼距就较短。好的设计指南建议适眼距至少要有5-6mm,以避免睫毛造成的不舒适。现代的设计可以增加许多透镜元件,不仅在这方面获得改善,还可以在高倍率的观测上变得更加舒适。特别是对于带眼镜的观测者,他们至少需要20mm的距离才能容纳德下它们的眼镜。

目镜设计

技术随着时间而进步,目前有许多不同设计的目镜,可以供给光学望远镜使用。它们改变了内部透镜的位置,而且不同的设计有时更加适合两种以上不同类型的观察,和不同类型的望远镜来使用。这些目镜的设计有惠更斯目镜、冉斯登目镜、凯尔纳目镜、无畸变目镜、爱佛目镜、康尼目镜、普罗索目镜、RKE目镜和尼格勒目镜

大双筒望远镜观测室外观


大双筒望远镜(Large Binocular Telescope,缩写为LBT)是两台架设在同一机架上的口径8.4米的双筒望远镜,等效口径11.8米,位于美国亚利桑那州的格拉汉姆山国际天文台。

大双筒望远镜原名哥伦布计划,是一个多国合作项目,参与者有由意大利天文学界、美国亚利桑那大学、亚利桑那州立大学、北亚利桑那大学、密歇根大学、俄亥俄州立大学、明尼苏达大学、弗吉尼亚大学、澳大利亚圣母大学、德国天文学界等。

大双筒望远镜的主镜由硼硅玻璃制成,焦比为1.142,是在亚利桑那大学史都华天文台的镜面实验室浇铸的。两个主镜的焦点合成为一个焦点,等效口径为11.8米,并且安装了主动光学和自适应光学系统。如果作为光学干涉仪,大双筒望远镜的最大角分辨率相当于一台口径为22.8米的望远镜。望远镜的观测室为方形,架设在直径23米的圆形轨道上,观测室四面都有可开合的通风口。

大双筒望远镜的第一块主镜于2004年10月建成,并在2005年10月12日开始观测。第二块主镜在2006年1月安装完成,2006年9月18日开始观测。


多镜面望远镜(Multiple Mirror Telescope,缩写为MMT)是史密松森研究所和亚利桑那大学共同建造的一台口径为6.5米的光学望远镜,位于美国亚利桑那州图森市以南60公里的霍普金斯山的山顶,这里是史密松森研究所下属的弗雷德·劳伦斯·惠普尔天文台的所在地。多镜面望远镜最初是一台由6个跨径1.8米的正六边形镜面组合成的望远镜,等效口径为4.5米,于1974年建成,在当时是世界上口径第三大的光学望远镜。1985年,研究人员决定将它改建为一台口径6.5米的单镜面望远镜,以获得更大的聚光面积和视场。

1998年3月2日,原来的多镜面望远镜开始拆卸,1999年3月25日由亚利桑那大学史都华天文台镜面实验室浇筑成形的6.5米口径硼硅玻璃主镜运抵现场,在同年5月17日进行了第一次观测,并在2000年5月20日正式投入使用。

大型天顶望远镜(LZT)

液体镜面望远镜是利用旋转使液体形成抛物面形状,以此作为主镜进行天文观测的望远镜。水银是在常温下唯一呈液态的金属,具有良好的反光性,是建造液体望远镜的理想材料。其特点是成本相对低廉,但是只能观测天顶附近的天体,无法对目标进行跟踪。液体镜面望远镜的概念最初是由发明反射式望远镜的英国著名物理学家牛顿提出的。1850年,意大利天文学家欧内斯特·卡波西建议,将盛有水银的旋转圆盘作为望远镜的主镜。然而19世纪到20世纪初期进行的一些列实验,结果不甚理想。1993年,加拿大不列颠哥伦比亚大学的保尔·希克森(Paul Hickson)等人建造了一台口径为2.7米(106英寸)的旋转水银面望远镜,获得了与其相同口径的传统光学望远镜差不多的像质。1996年,他又为美国宇航局位于新墨西哥州的轨道碎片天文台建造了一台相同口径的液体望远镜,用于监视人造卫星轨道上的空间垃圾。1994年,不列颠哥伦比亚大学开始建造一台口径为6米的旋转水银面望远镜——大型天顶望远镜(LZT),并于2003年建成,其空间分辨率达到了1.4角秒


光线在三棱镜中色散的想象图

光学(Optics),是物理学的一个分支。它解释了光的现象及特性。

光学这个领域所讨论的范围包括红外线、紫外线及可见光。但因为光具有电磁波的特性,所以类似现象如X光、微波、电磁辐射及无线电波也可能产生此特性。所以光学被认为是电磁学的附属领域。 一些光学现象及行为的产生是与光的量子特性所关联的,而这些特性包含在光学及量子力学范畴。在实践中,大部分的光学现象可以用光的电磁特征来描述,例如麦克斯韦方程组。

光学领域有它自己的分类特征,协会以及学术会议。光的纯科学领域通常被称为光学或光学物理。应用光学通常被称为光学工程。光学工程中涉及到照明系统的部分被特别称为照明工程。每一个分支在应用,工艺技术,焦点以及专业关联方面都有很大不同。在光学工程中比较新的发现通常被归类为光子学或者光电工程. 而区分这些定义的界限并不明显,经常因在世界的不同地区以及工业的不同领域而异。

因为光的科学在实际中的广泛的应用,光科学和工程光学在领域上有很大程度的互相交叉。 光学也与电子工程、物理学、心理学、医学(尤其是眼科学与验光术)等许多学科密切相关。此外,物理学可以非常完整描述地光学现象,但对大部分问题显得过于繁复,因此在光学领域中引入了一些特定的简化模型。这些模型可以很好地描述光学现象,而无需考虑那些不相关及(或)无法观测到的现象。


模拟的自然光光谱图案


太阳光光谱是典型的吸收光谱。因为太阳内部发出的强光经过温度较低的太阳大气层时,太阳大气层中的各种原子会吸收某些波长的光而使产生的光谱出现暗线。

光谱
全称为光学频谱,是复色光通过色散系统(如光栅、棱镜)进行分光后,依照光的波长(或频率)的大小顺次排列形成的图案。光谱中最大的一部分可见光谱是电磁波谱中人眼可见的一部分,在这个波长范围内的电磁辐射被称作可见光。光谱并没有包含人类大脑视觉所能区别的所有颜色,譬如褐色和粉红色。条目颜色解释了这种现象的原因。

复色光中有着各种波长(或频率)的光,这些光在介质中有着不同的折射率。因此,当复色光通过具有一定几何外形的介质(如三棱镜)之后,波长不同的光线会因出射角的不同而发生色散现象,投映出连续的或不连续的彩色光带。
日光被三棱镜分色

这个原理亦被应用于著名的太阳光的色散实验。太阳光呈现白色,当它通过三棱镜折射后,将形成由红、橙、黄、绿、蓝、靛、紫顺次连续分布的彩色光谱,覆盖了大约在390到770纳米的可见光区。历史上,这一实验由英国科学家艾萨克·牛顿爵士于1665年完成,使得人们第一次接触到了光的客观的和定量的特征。


白光经由三棱镜被分开成各种不同频率的可见光。


电磁波谱。

电磁波(又称:电磁辐射、电子烟雾)是能量的一种,只要是本身温度大于绝对零度的物体,都会放出电磁辐射。虽然大部分的电磁波不能被人看见,但就像人生活在空气中也看不见空气一样,人们也看不见可见光以外的电磁波。电磁波不需要依靠介质传送,各种电磁波在真空中速率固定,速度为光速。


电磁波谱
无线电波 | 微波 | 红外线 | 可见光 | 紫外线 | X射线 | 伽马射线

自然可见光: 红 | 橙 | 黄 | 绿 | 蓝 | 靛 | 紫
七彩原色光: 红 | 橙 | 黄 | 绿 | 青 | 蓝 | 紫

电磁波是“振荡且互相垂直的电场与磁场的结合(向量积)”。电磁辐射在空间中以波的形式移动,有效的传递能量和动量。电磁辐射是由叫光子的量子粒子形成。人眼可接收波长在400至780纳米间的电磁辐射,因此这种电磁辐射也叫可见光。研究电磁辐射的物理学叫电动力学,是电磁学的分支。

电磁辐射先被麦克斯韦方程组预测,而后由德国物理学家海因里希·鲁道夫·赫兹在实验中证实。 若人体长时间处于电磁波过高的地方,对身体健康亦有负面影响。

相关文章

    欢迎来到千里眼望远镜商城
热门搜索:进口双筒望远镜|望远镜|天文望远镜|防水|专题|贝戈士10x42

军用望远镜价格  天文望远镜  单筒望远镜推荐  望远镜什么牌子的好  单筒望远镜制作  夜视望远镜  99式军用望远镜  望远镜选购  双筒望远镜光轴  望远镜 
购物指南
联系客服
营业时间
常见问题
购物流程
交易条款
配送方式
中铁运输
公路运输
特快专递
邮局普包
快递运输
自提
支付方式
货到付款
付 款 方 式
淘宝店
拍拍店
售后服务
退货
商品退货保障
客户中心
订单查询
交易记录
我的余额
公司简介